
EY self-healing
automation

EY self-healing automation 3

TABLE OF CONTENTS
Executive summary		 3

Current state of manual maintenance	 4

Self-healing automation		 4

Changing the mindset		 5

Changing leading practices		 6

How self-healing works		 7

The self-healing process		 7

Integration ability		 8

Common questions		 9

What’s the future of self-healing?		 10

Right time, right place		 10

Want to learn more?		 10

Executive summary
While test automation has long been recognized as an
engine for efficiency and competitive advantage, each
new wave of technology transformations and application
upgrades has posed questions for leaders: How will this
help us, and to what extent? Where and when should
we implement? What upfront investment is required to
realize optimal benefits in terms of streamlined processes
and long-term savings?

The latest test automation tools and frameworks, while
holding great promise, are accompanied by a significant
obstacle. When scripts are confronted with the constant
changes that come from the fast pace of application
development (especially in an agile and DevOps world),
most fail to work, and the advantages of automation

can be quickly offset by the need to conduct manual
troubleshooting, debug, fix and generally maintain test
automation scripts. Such interruptions are enough to sour
executives on the cost-benefit case for investing in test
automation scripts. Automation is therefore perceived
as something that:

•	 	Slows down testing due to constant maintenance
•	 	Requires more people to perform maintenance
•	 	Shouldn’t be adopted until late in development for

fear of too much change and resulting maintenance
•	 	Ultimately costs more than it’s worth
But what if the need for manual maintenance could
be removed?

EY self-healing automation EY self-healing automation4 5

Current state of manual maintenance
Unfortunately, “fragile” is a word all-too-commonly
associated with test automation scripts. When a script
breaks, manual object identification maintenance can
take up to 15 minutes per occurrence. A script breaks
when object properties change, and an automation
engineer must stop developing new scripts to troubleshoot
and fix the broken one. The team manually inspects or
spies the object to see the new property value or find
new properties to use, then updates the script or object
repository accordingly and reruns the script.

The math is daunting: One application deployment per
week could encounter around 35 object changes (which
varies greatly based on application maturity, development
methodology, size of project, etc.). At 15 minutes
per manual fix, the result is more than one person’s
full workday — 8.75 hours — spent per week on basic
automation maintenance.

Self-healing automation
But it doesn’t have to be that way. Self-healing
automation is a solution that addresses the No. 1 cause
of test automation script maintenance: object changes.
The “object,” in this context, is an item in a script — such
as a button or text box on a webpage — that the script (or
the user) would interact with to perform tasks. Scripts
must be able to unique identify which
object it needs to perform an action
on — which text box should it put your
username into? Just as a person can be
identified by physical attributes such as
size, hair color or eye color — or by other
relative means (“that person we saw at
the store yesterday”) — objects must also
be uniquely identified in some way. And,
just as people’s appearances can change
to the point that they aren’t recognizable
to others, objects that no longer fit
their original “description” can confuse
traditional automation scripts. When
that happens, scripts break and
downtime accumulates.

Self-healing employs data analytics to
identify objects in a script even after

they have changed. The result is a system that goes
far beyond the “Band-Aid” approach often written
into scripts, such as the use of wildcards or regular
expressions to handle variation in object names or
identifiers. Rather than relying on those methods — and
allowing productivity to grind to a halt anytime they fail —

the self-healing approach introduces a
higher level of intelligence and analysis.

When your script fails due to being
unable to find the object it expected, the
self-healing mechanism provides a fuller
understanding and analysis of options.
Rather than shutting down the process,
it examines objects holistically, evaluates
attributes and properties of all available
objects and uses a weighted scoring
system to select the one most similar to
the one previously used. Self-healing can
scrape, evaluate and choose among 10
objects in less than 0.05 seconds. Stop-
and-go syndrome is effectively cured.

The self-healing
difference can be fully
realized as it:

•	 	Changes the mindset
regarding automation
approaches

•	 	Allows automation
efforts to start
earlier as fears of
maintenance subside

•	 	Automates the
maintenance process
itself in real time

•	 	Improves or preserves
the return on
investment

Traditional object maintenance
Up to 15 minutes per occurrence

Self-healing object identification
<0.5 seconds per occurrence

Automation team debugs to
find what object is causing
the failure

Object
properties
change,
script breaks

Self-healing tool takes
control, captures former
properties of object missing

Manually inspect or spy
the object to see the new
property value or find new
properties to use

Scrapes properties and
values of all similar objects
on the page

Update the script or object
repository with new information
and rerun the script

Using our data analytics and
custom property weighting,
the tool predicts the most
probable object you are
looking for

Continues script using
new object properties
and updates repository
for future use without
error

2

1

2

3

3

4

4 5

EY self-healing automation EY self-healing automation6 7

Changing leading practices
The implications of self-healing are wide ranging. Test
automation leading practices say you should not use
especially fragile methods to identify objects such as
absolute XPaths and certainly never use something
as lengthy and specific as the full outerHTML. These
would constantly change and be very difficult to
maintain manually.

With self-healing, the opposite can be true: absolute
XPaths and other very specific methods of identification
can be — maybe should be — used. Since self-healing
could fully maintain object identification automatically
in fractions of a second, why not automatically build
absolute XPaths (yes, we can do that) to use that to solely
identify objects in your framework? It would standardize
and simplify methods and mechanisms in your framework,

provide very specific and accurate objects and handle
circumstances where properties no longer exist (i.e., a
text box used to have a name “txtUserName” and now
has no name property at all) or perhaps there’s no unique
identifier at all.

This wouldn’t work in all circumstances, but an interesting
application of self-healing is that it can fundamentally
change the way your framework handles objects. Self-
healing would run more often, but would you care? How
much time would you save from having to follow normal
processes for object identification and maintenance?
When self-healing runs in a fraction of a second, will
you even notice?

How does self-healing work? How can this be possible?

How self-healing works
With self-healing automation, the same number of object
changes per week mentioned earlier (35) — which could
take more than a full workday to handle manually — can
be remediated in a fraction of a second. When an
object’s properties change, the self-healing tool springs
into action, scraping similar objects on the page and
comparing them to the previously stored historical data
on that object. Data analytics and custom property
weighting are deployed, enabling the tool to predict the
most probable object being sought. The automation
script continues running, using new object properties
and an automatically updated object repository to head
off future errors. The default weights assigned to each
property name can be modified.

Ultimately, empowered automation engineers will turn
their attention to use cases that seemed too aspirational
in the past. They can:

•	 	Create generic scripts regardless of application or
objects, resulting in much higher reusability

•	 	Reduce the effort to update automation scripts to work
after application upgrades

•	 	Reuse more automation scripts based on out-of-the-box
(OOTB) functionality

•	 	Use the same scripts between environments
•	 	Use the same scripts between clients/projects

(important for consulting firms and our clients to
accelerate testing by reducing initial ramp-up time for
automation efforts!)

The self-healing process
The process is straightforward. When an object cannot
be found (due to a property name or value change), the
failed object is fetched from a historical object repository
file, along with all its property names and values. All
similar objects (such as all other text boxes) that do exist
on the page are scraped, including all their properties
and values and saved into an “Object Capture” table.
Self-healing will use various similarity scoring algorithms
to evaluate how similar each property is between the
missing historical object and the available objects on the
page. Each property is given a similarity score

(while also considering a customizable weightage so you
could say that “name” is more useful to identify a match
than “color,” for example) and ultimately each possible
match is given a total score.

Self-healing will return the object and its properties with
the highest score for use. The script can then attempt
to identify the new object, continue on in execution
and update framework repositories with the new object
information, as long as everything works.

Changing the mindset
Now, what if I told you that you didn’t have to uniquely
identify objects anymore?

You take the blue pill: you go back to your everyday life,
writing automation scripts like you always have. Manually
identifying objects, endless maintenance and updates.
Poor development practices sometimes even making it
impossible to even identify objects at all.

You take the red pill: let’s see how far this rabbit hole goes.
You are freed from the painstaking maintenance, and
now your scripts can be used across different applications
without making any changes.

The status quo in test automation is that every object
must be identifiable based on any number of specific
ways. Going back to the human analogy, a person can be
identified by height, hair color, eye color, clothing or other
characteristics. But what if you don’t need to pinpoint a
specific person, but rather someone who demonstrates
some of those characteristics (6 feet tall with brown hair)?

Self-healing automation represents a change in the
mindset of test automation, dispensing with the need
to always uniquely identify every specific object. Self-
healing can take more general information — size, general
location on a page, text and other characteristics — and
find the closest match for the object.

You could start to write generic scripts to perform tasks
as long as you know enough about an object. For instance,
a script to log in could be written to simply look for a text
box with a name similar to “username” and another text
box below it with a name similar to “password” and then
find a button with a name or text similar to “submit” or

“log in.” Now you have a login script that could work on
thousands of applications.

This capability effectively turns today’s concept of test
automation on its head. The script execution

proceeds until it cannot
find an object required to
complete an action

Attempt run with highest
scoring object, update
object repository

Historical
properties

Property
weightages

Compare
to possible
matches

X

Object can’t be found!
Time for self-healing!

Calculate
similarity scores

The objects and their
properties in the current
DOM are extracted

Temporary storage of
object candidates

EY self-healing automation EY self-healing automation8 9

Common questions
Discussions of this solution frequently give rise to
questions such as the following.

What if it doesn’t work?
While we’ve found that our self-healing mechanism
is accurate more than 80% of the time, much
depends on the application, the scripts and other
factors. It’s flexible enough to add more properties
to aid in comparison accuracy, as well as weight the
importance of properties (such as determining that a
similar name is more important than a similar color).
In a worst-case scenario, if self-healing identifies the
wrong object, you are no worse off than before — you’ll
have to perform maintenance manually for that one
instance. So why not try it? We have not encountered
this, but even if it worked only 25% of the time, that’s
25% less manual maintenance.

Are there any known limitations or issues?
The primary application is for web-based applications,
so further adaptation would need to be done to apply
to other platforms (native mobile apps, desktop,
etc.). In concept, this applies to those as well as
robotic process automation (RPA), since they identify
objects in similar ways for the most part (some
tools support image cognition-based identification
that would not be covered here). However, most
RPA tools are proprietary and closed off and do not
allow for integration of external utilities such as this.
Even if they allow custom code to be run, that code
cannot manipulate their internal object repository
information.

How configurable is it?
It is entirely configurable, either by using config files
or by directly editing the code. In the configuration
files, you can configure properties to scrape and
determine their weight. In the code, you can change
the similarity scoring mechanism, the input/output
formats (JSON by default) and other mechanisms.

How does it handle objects that are extremely
similar, such as Address 1 and Address 2 fields?
The first thing to try is adding more properties to
compare that may help differentiate these objects. In
this example, they are both text boxes, have similar
names and sizes and locations — but what is different
about them? Perhaps considering which is mandatory
would help correctly identify them, or more heavily
weighting location.

Other tools claim to have self-healing capabilities.
How is this different?
Other tools are proprietary and siloed — they must
be purchased from the vendor, with everything
done the vendor’s way. To use their “self-healing”
mechanisms, you must totally transition to their tool,
which is a significant effort for large organizations.
Many of these tools, while more modern in their
approach and capabilities, are lacking the robustness
needed by most large organizations. Our self-healing
utility can be integrated with existing tools, reused
and customized. It provides a more direct, scalable
solution that has the flexibility to work differently
with other tools or applications.

Why not use machine learning or other concepts for
self-healing?
While it could be accomplished using machine
learning, it introduces a greater level of complexity
to the process. Machine learning (ML) requires large
amounts of training data to be accurate and then is
only accurate based on that training data. Different
applications, projects and automation frameworks
will have different quirks — or “features” as they are
called in the data science world — that the ML model
may not adapt well to. If a new property needs to
be assigned to an object, machine learning requires
a change to its model, new training data and a
comparatively cumbersome procedure. The self-
healing automation solution, by contrast, provides a
lighter-weight, more direct approach that is eminently
more controllable and flexible.

Integration ability
One of the hallmarks of the self-healing solution is
the flexibility it offers in terms of implementation. If a
business opts for the pre-built EY (Ernst & Young LLP
(EY) framework, it can reap the benefits of a ready-to-use
system and sharply reduce the initial setup time. Our pre-
built framework also offers the advantages of pre-built
features for items such as common test management
integrations, more than 200 functions for web, mobile,
API, DB, PDF, accessibility; and other testing needs right
out of the box, such as reporting and popular behavior-
driven development (BDD) components. The result is
a sizable head start for your business, where as much
as 50%-60% of your automation needs can be started
within three hours from saying “go.” At the same time, a
pre-built framework does not mean everything has to be

reinvented. It still allows potential reuse of existing scripts
if written in a compatible language such as Gherkin.

Unlike proprietary automation tools that claim to use
machine learning or other self-healing mechanisms,
this solution also can be integrated with an existing
framework by being directly integrated into Java-based
frameworks or via microservice/API for other tools, such
as MicroFocus Unified Functional Testing (UFT). Such
efforts will vary based on the existing framework’s
architecture and maturity, but will still allow the reuse of
current scripts and will not require new tool knowledge.
The tool has been crafted to be flexible and universal —
usable with any nonproprietary test automation tools.

EY self-healing automation EY self-healing automation10 11

What’s the future of self-healing?
While the benefits of self-healing can be realized today,
we are working to broaden its reach and utility.

New implementation approaches and use cases continue
to come up. For example, once you realize and apply the
power of self-healing to your framework, you may realize
that your approach to automation can change entirely, as
mentioned earlier. We are applying self-healing in unique
ways to help our clients accelerate test automation in
ways that were previously not possible:

1. Start a project with 50% or more of testing already
automated by using self-healing to adapt OOTB platform
scripts to work with their specific implantation

2. Create generic scripts that can be used on any
application (logging in, for example)

3. Start automation earlier, since the fear of maintenance
is reduced

Furthermore, as more RPA tools are developed in the
future that don’t have the proprietary restrictions of
those used today, you can look for this unique technology
to be extended to RPA and other robotics concepts.

Right time, right place
By creatively and aggressively confronting the traditional
problems associated with object changes, our self-
healing approach differentiates itself in the world of
test automation. If you’ve struggled with getting value
out of test automation or shifting testing left in the
SDLC in DevOps or agile, self-healing could help. The
great promise of next-generation automation echoes

that of previous automation advances — to boost
operating efficiency and liberate people from tedious
tasks. By removing the frequent manual interventions
that accompany test script object changes, self-healing
automation can deliver on that promise and provide
companies with the competitive advantage they need
to thrive in a digitally transformed marketplace.

Want to learn more?
If you have specific questions related to
your situation, or would be interested in a
demonstration, please reach out to John
McEvoy at john.mcevoy@ey.com

mailto:john.mcevoy@ey.com

EY | Assurance | Tax | Transactions | Advisory
About EY
EY is a global leader in assurance, tax, transaction and advisory
services. The insights and quality services we deliver help build
trust and confidence in the capital markets and in economies the
world over. We develop outstanding leaders who team to deliver
on our promises to all of our stakeholders. In so doing, we play a
critical role in building a better working world for our people, for
our clients and for our communities.

EY refers to the global organization, and may refer to one or
more, of the member firms of Ernst & Young Global Limited,
each of which is a separate legal entity. Ernst & Young Global
Limited, a UK company limited by guarantee, does not
provide services to clients. Information about how EY collects
and uses personal data and a description of the rights individuals
have under data protection legislation is available via ey.com/
privacy. For more information about our organization, please
visit ey.com.

For more information about our organization, please
visit ey.com.

Ernst & Young LLP is a client-serving member firm of
Ernst & Young Global Limited operating in the US.

© 2019 Ernst & Young LLP.
All Rights Reserved.

US SCORE no. 06363-191US
1904-3108678

ED None

This material has been prepared for general informational purposes only
and is not intended to be relied upon as accounting, tax or other professional advice.
Please refer to your advisors for specific advice.

ey.com

